

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 We are really grateful to everyone who has contributed or is contributing to the development and deployment
of this project.

Contributors include:

Hardware Implementation

	Javier Acevedo - javier.acevedo@tu-dresden.de

	Marian Ulbricht - ulbricht@innoroute.de

Theoretical Development
* Juan Alberto Cabrera Guerrero - juan.cabrera@tu-dresden.de

Diplomstudent
* Florian Grabs - florian.grabs@mailbox.tu-dresden.de

We also thank to everyone who has sent pull requests or issues to improve this work.

Additionally, we would like to thank to members of National Instruments - Ettus Research for providing hints about the virtualization of the hardware resources

 <p align=”center”>

</p>

Post-Shannon-SDR

[![MIT Licensed](https://img.shields.io/github/license/jracevedob/Post-Shannon-SDR)](https://github.com/jracevedob/Post-Shannon-SDR/blob/main/LICENSE)
[![Build Status](https://github.com//jracevedob/Post-Shannon-SDR/actions/workflows/build.yml/badge.svg)](https://github.com//jracevedob/Post-Shannon-SDR/actions)
[![Documentation Status](https://readthedocs.org/projects/post-shannon-sdr/badge/?version=latest)](https://post-shannon-sdr.readthedocs.io/en/latest/?badge=latest)
[![Github All Releases](https://img.shields.io/github/downloads/jracevedob/Post-Shannon-SDR/total.svg)]()

In this repository, you will find the source code for analyzing tracks during data transmission using Software Defined Radios. Metrics about error positioning and error syndrom are attached. This project is carried out as part of the Post Shannon research at the Deutsche Telekom Chair of Communication Networks.

Overview

In this repository, you will find the source code and data blocks for implementing different types of digital transmission in GNURadio.
For this test, the Ettus Research N310 SDR was under use and the data analysis was performed using Python, C and C++. For more information about the developing hardware, please refer to the vendor [Website](https://kb.ettus.com/N300/N310).

Table of Contents

Quick Start

Driver and Software Installation
The installation of GNURadio is taken directly for the official Ettus Research website under the following [Link](
https://kb.ettus.com/Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux).
In our case, we have done the installation in an Ubuntu 20.04 system. For a more detailed and step-by-step description of the setup,
please refer to the [Installation](./Installation) repository.

Examples

Some examples about the simulation of different modulation schemes is provided. The idea is provide a profound explanation about how
GNU Radio really works

Implementation

You can find the implementation of the functional C++ signal processing blocks in [Modules](./Modules). The implementation of each block and its subsequent addition to GNU Radio Companion is explicitely shown for every block. The majority of the blocks has been used for time synchronizaiton and the implementation of old dropped GNU Radio blocks.

Hardware acceleration
You can find how to accelerate GNU Radio blocks using the built-in Xilinx Zynq Multi-processor System-on-Chip (MPSoC). All the acceleration design are based on the Ettus Research Radio Frequency Network-on-Chip (RFNoC) architecture. For more details, please refer to [RFNoC](./RFNoC).

Vagrant

Citations
We are going to be really content and encouraged if you can cite our scientific works in your own publications
and distribute our works among your research collaborators and colleagues.

`
@incollection{ACEVEDO2020413,
title = {Chapter 26 - Integrating software-defined radios},
editor = {Frank H.P. Fitzek and Fabrizio Granelli and Patrick Seeling},
booktitle = {Computing in Communication Networks},
publisher = {Academic Press},
pages = {413-427},
year = {2020},
isbn = {978-0-12-820488-7},
doi = {https://doi.org/10.1016/B978-0-12-820488-7.00042-6},
url = {https://www.sciencedirect.com/science/article/pii/B9780128204887000426},
author = {Javier Acevedo and Marian Ulbricht and Dongho You},
keywords = {Wireless communications, Software-defined radio, Universal software radio peripheral},
abstract = {In this chapter, we extend the emulator ComNetsEmu used throughout the book by implementing foundational wireless communication applications using Software-Defined Radio (SDR) devices, particularly Universal Software Radio Peripherals (USRPs). After an introduction of SDR and some common implmentations, we provide practical hands-on examples. Through a bridge network located between two Docker containers and the emulator, two basic applications are flashed into the SDR hardware to transfer data using OFDM modulation. This deployment allows us to demonstrate how softwarization leverages the integration of emerging and current technologies applied to communication networks.}
}
`

The latest publication of this repository has been submitted to the IEEE CSCN 2021 Conference. As soon as the authors receive a notification about the acceptance of the paper, we will provide further details to find our contribution.

```
@INPROCEEDINGS{ACEVEDO,


author={Acevedo, Javier and Ulbircht, Marian and Gnuyen, Giang and Fitzek, Frank H. P.},
booktitle={2021 IEEE Conference on Standard for Communication and Networking },
title={Virtualization of the Radio Unit Resources for theNext Generation of Radio Access Networks},
year={2021},
volume={},
number={},
pages={1-6},
doi={}}




```

Contributing

This project exists thanks to all people who contribute.
The [list](./CONTRIBUTORS) of all contributors.

References

Internet sources
https://kb.ettus.com/Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux

Academic and industry sources

Contact

	Javier Acevedo - Contributor and Project Maintainer javier.acevedo@tu-dresden.de

Acknowledgements

We are really grateful to the [6G Life](https://6g-life.de/) project of the TU Dresden and Prof. Frank H. P. Fitzek for their support in the realization of this initiative.

License

This project is licensed under the [MIT license](./LICENSE).

News

	12.08.2021 - Release of first set of modulation examples and build of functional C++ blocks

	11.08.2021 - Spektrum Analyzer updated

	14.08.2021 - Hardware acceleration deployment for the C++ integrated blocks

	27.10.2021 - Submission of first paper to the IEEE CSCN 2021 conference

	23.11.2021 - Zynq virtualization for hardware acceleration added

 In this directory, different modulation schemes ranging from the most basic BPSK until the more elaborated OFDM, applied in current wireless communcation systems such as LTE.
Although this examples are mainly simulations without any real transmission and reception of data, the highlighting feature of this directory relies on the profound explanations about
the parameters that control the functionality of both hardware and software. In the repository X, you will have basically the same functional block, but the radio module will be
implemented and comprehensively explained.

Understanding Root R FIlter
The

Signal recovery

Sampling

Time Synchronization

Radio setup

 In this directory, you can find the simulation of a BPSK transciever.

Understanding BPSK

The Binary Phase Shift Keying (BSPK) is a digital modulation scheme charaterized by the phase change by 180 degrees. Therefore, it uses only one bit to modulate data in one of the two constellation points

<p align=”center”>

</p>

Equalizer

<p align=”center”>

</p>

 In this directory, you can find the simulation of a QPSK transciever.

Understanding QPSK

The Quadrature Phase Shift Keying (QSPK) is a digital modulation scheme charaterized by the phase change by 180 degrees. Therefore, it uses only one bit to modulate data in one of the two constellation points

Equalizer

<p align=”center”>

</p>

 <p align=”center”>

</p>

The operation of the device depends in great extend on the adequate configuration of the USRP through the UHD utilities. In the case of the N310, the following are the specifications that must be taken under consideration for the deployment of applications in GNURadio

Supported Sample Rates
The USRP N300/N310 supports the three fixed Master Clock Rates listed below.

	122.88 MHz

	125.00 MHz

	153.60 MHz

Tunning range
The transmission frequency, also known as tunning, can be adjusted from 10MHz to 6GHz.
Additionally, the user can configure the following parameters:
* 4 RX DDC chains in FPGA
* 4 TX DUC chain in FPGA

For more information, please refer to the vendor’s documentation in the following [Link](https://files.ettus.com/manual/page_usrp_n3xx.html) and in the following [Link](https://kb.ettus.com/N300/N310).

Understanding sampling frequency and samples per symbol

Every USRP supports different sample rates

 <p align=”center”>

</p>

The software stack for programming Ettus Research’s Devices in conjunction with GNU Radio is mainly composed by applications based on Python wrappers of C++ signal processing functions. From the figure above, it is depicted that there are many other programs to flash the USRPs such as MatLab or LabView, but all of them are out of the scope of this work, where only open source software is under use. Those applications run on top of operating systems that establish communication with the hardware through drivers.

For the utilization of the USRP N310 together with GNURadio in GNU-Linux Ubuntu 20.04, it is necessary to install the following dependencies and packages:

`
sudo apt-get -y install autoconf automake build-essential ccache cmake cpufrequtils doxygen ethtool fort77 g++ gir1.2-gtk-3.0 git gobject-introspection gpsd gpsd-clients inetutils-tools libasound2-dev libboost-all-dev libcomedi-dev libcppunit-dev libfftw3-bin libfftw3-dev libfftw3-doc libfontconfig1-dev libgmp-dev libgps-dev libgsl-dev liblog4cpp5-dev libncurses5 libncurses5-dev libpulse-dev libqt5opengl5-dev libqwt-qt5-dev libsdl1.2-dev libtool libudev-dev libusb-1.0-0 libusb-1.0-0-dev libusb-dev libxi-dev libxrender-dev libzmq3-dev libzmq5 ncurses-bin python3-cheetah python3-click python3-click-plugins python3-click-threading python3-dev python3-docutils python3-gi python3-gi-cairo python3-gps python3-lxml python3-mako python3-numpy python3-numpy-dbg python3-opengl python3-pyqt5 python3-requests python3-scipy python3-setuptools python3-six python3-sphinx python3-yaml python3-zmq swig wget
`

	GNU Radio Installation - In Ubuntu 20.04, the installation of GNU Radio can be done through the package manager PPA by typing the following commands in the terminal. In this case, the GNU Radio version is the latest from the master branch. The user can install other versions according to his/her needs following the tutorial in the following [Link](https://wiki.gnuradio.org/index.php/InstallingGR).

`
sudo add-apt-repository ppa:gnuradio/gnuradio-master
sudo add-apt-repository ppa:gnuradio/gnuradio-releases
sudo apt-get update
sudo apt install gnuradio
`

Additionally, the installation can take place by building the source code in your own host machine. For the installation of the latest release, please place the following commands in your terminal:

`
git clone --recursive https://github.com/gnuradio/gnuradio
cd gnuradio
git checkout maint-3.8
git submodule update --init --recursive
mkdir build
cd build
cmake ../
make
make test
sudo make install
sudo ldconfig
`

After the installation successfully terminates, you should see information about the installed version of GNU Radio by typing the following commands in the terminal:
`
gnuradio-config-info --version
gnuradio-config-info --prefix
gnuradio-config-info --enabled-components
`

In order to open the graphical interface, also known as GNU Radio Companion, please type the following command:

`
gnuradio-companion
`

	UHD Installation - Please refer to the following [Link](https://files.ettus.com/manual/page_install.html) for more details about the installation of the Universal Hardware Driver (UHD) of Ettus Research’s SDR devices. The installation of the UHD can be done through the package manager by just typing the following command line in the terminal:

`
sudo apt-get install libuhd-dev libuhd003 uhd-host
`

Additionally, the installation can take place by using binaries files through official Ettus Research’s repositories:

`
sudo add-apt-repository ppa:ettusresearch/uhd
sudo apt-get update
sudo apt-get install libuhd-dev libuhd003 uhd-host
`

For Ubuntu 20.04 and previous versions, the package libuhd003 has been dropped and replaced by the package libuhd3.15.0. Therefore, use the following command line in the terminal for error-free installation:

`
sudo apt-get install libuhd-dev libuhd3.15.0 uhd-host
`

and by using binaries:

`
sudo add-apt-repository ppa:ettusresearch/uhd
sudo apt-get update
sudo apt-get install libuhd-dev libuhd3.15.0 uhd-host
`

Finally, you can also install the UHD driver directly from the source code provided by Ettus Research in the following GitHub [repository](git clone https://github.com/EttusResearch/uhd). The instructions for the installation of the version v3.15.0 of the driver are the following:

`
git clone https://github.com/EttusResearch/uhd
cd uhd
git checkout v3.15.0.0
cd host
mkdir build
cd build
cmake ../
make
make test
sudo make install
sudo ldconfig
export LD_LIBRARY_PATH=/usr/local/lib
`
Linux-based systems contain enviormental variables, which are dinamic values stored within the systems to be used for applications launched from shell terminals. To make sure that the UHD library path can be found when GNU Radio is executed, it nes necessary to include the library in the bashrc file of your home directory. Open a terminal and type:

`
nano $HOME/.bashrc
`

Then, add the following line at the botton of the file:
`
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib
`

If the installation was successful, then by typing the command uhd_find_devices in the terminal, you should get the following message:

`
$ uhd_find_devices
[INFO] [UHD] linux; GNU C++ version 9.3.0; Boost_107100; UHD_3.15.0.0-release
No UHD Devices Found
`

	Hardware Setup for Ethernet communication - After a successful installation of all the dependencies and packages within your operating system, it is then necessary the setup of the IP addresses of the host computer in order to interact with the USRP N310.

Set the IP address of your internet adapter as shown below for the interface enp0s31f6. If the Ethernet adapter on your machine is for instance eth0, then replace enp0s31f6 for eth0.

`
sudo ifconfig enp0s31f6 192.168.10.1 netmask 255.255.255.0
`

By typing the following command, you can check that your Ethernet adapter is configured with the desired IP address:

`
ip a
`
Then, you have to connect the RJ45 - SFP+ adapater into the SFP+ Port of the USRP N310. By using the Ethernet cable included in the box of the USRP, you can connect the host computer and the USRP device.

Then, by typing the command uhd_find_devices in the terminal, it is exptected to see the connected devices to your host machine:

```
$ uhd_find_devices
[INFO] [UHD] linux; GNU C++ version 9.3.0; Boost_107100; UHD_3.15.0.0-release
————————————————–
– UHD Device 0
————————————————–
Device Address:


serial: 3198418
addr: 192.168.10.2
claimed: False
mgmt_addr: 192.168.10.2
product: n310
type: n3xx





– UHD Device 1


	Device Address:
	serial: 3198444
addr: 192.168.10.200
claimed: False
mgmt_addr: 192.168.10.200
product: n310
type: n3xx





```


	RF Network-on-Chip - The addition of hardware acceleration modules consists of an offloading of high-paralellizable functions such as FFT and IFFF before and after down- and upsampling, respectively.

 This folder contains the hand-crafted GNURadio modules developed for the acceleration of the base band functions. For more information about the development of the Python wrappers for C++ function, please refer to the following [Link](https://wiki.gnuradio.org/index.php/Guided_Tutorial_GNU_Radio_in_C%2B%2B). We highly recommend to the reader to have a basic to intermediate knowledge about Object-oriented Programming (OOP) in order to fully comprehend the structure and functionality of the source code.

The C++ programming language is a high level and highly portable language which enables the implementation of performance-critical code for large-scale applications. As example, we provide a stetp-by-step implementation and compilation of a preamble block, mainly used fro the syncrhonization of data transmitted through the air between the USRP N310.

Module declaration

 title: The PREAMBLE OOT Module
brief: Short description of gr-preamble
tags: # Tags are arbitrary, but look at CGRAN what other authors are using

	sdr

	author:
	
	Author Name <authors@email.address>

	copyright_owner:
	
	Copyright Owner 1

license:
gr_supported_version: # Put a comma separated list of supported GR versions here
#repo: # Put the URL of the repository here, or leave blank for default
#website: <module_website> # If you have a separate project website, put it here
#icon: <icon_url> # Put a URL to a square image here that will be used as an icon on CGRAN
—
A longer, multi-line description of gr-preamble.
You may use some basic Markdown here.
If left empty, it will try to find a README file instead.

 title: The TUTORIAL OOT Module
brief: Short description of gr-tutorial
tags: # Tags are arbitrary, but look at CGRAN what other authors are using

	sdr

	author:
	
	Author Name <authors@email.address>

	copyright_owner:
	
	Copyright Owner 1

license:
gr_supported_version: # Put a comma separated list of supported GR versions here
#repo: # Put the URL of the repository here, or leave blank for default
#website: <module_website> # If you have a separate project website, put it here
#icon: <icon_url> # Put a URL to a square image here that will be used as an icon on CGRAN
—
A longer, multi-line description of gr-tutorial.
You may use some basic Markdown here.
If left empty, it will try to find a README file instead.

 ## Introduction of hardware accelerated blocks in C++

In this repository, you will find the implementation of Radio Frequency Network-on-Chip for the acceleration of the building blocks of GNURadio inside the Zynq 7000 series of the
N310 Ettus Research ahrdware.

 ## Known issues

Those are the main problems we have faced during the implementation of signal processing blocks in GNU Radio, using the Ettus Research USRP N310.

Connection issues: Device claimed False

	Device Address:
	serial:
addr: 192.168.10.200
* claimed: False
mgmt_addr: 192.168.10.200
product: n310
type: n3xx

We have solved this issue by unplugging the SFP+ 1GB connector from the RJ45 adapter. If during the execution of the GNU Radio dataflow some errors arise, then pay attention to the synthasis of the address of the device inside the UHD Source and UHD Sink block. The correct way for declaring them is addr=192.168.10.xxx. Avoid the usage of variables for that instantiation.

Connection issues: Device reachable No

	Device Address:
	serial:
claimed: False
mgmt_addr: 192.168.10.200
product:
reachable: No
type:

This issue refers to a lack of synchronization between the USRP and the host computer. Therefore, this problem is trivially resolved by waiting until the USRP N310 communicates through the UHD driver to the host machine.

 <p align=”center”>

</p>

<p align=”center”>

</p>

In this example, it is presented a spectrum analyzer in which the user can select a frequency, also denominated as tunning, to be sensed. Additionally, a
filtering stage is presented to remove the frequency components derived from noise or compositions of the transmitted signal. By using a frequency Xlating FFT filter, a frequency translation and an anti-aliasing filter can be applied to the signal. For more information, refer to the following [reference](http://blog.sdr.hu/grblocks/xlating-fir.html).

The Fourier Filter takes the FFT of input signal and attenuates or amplifies certain frequencies. Then, it applies the inverse of the FFT, the IFFT, to generate the filtered signal as you can see from the image below.

 _static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

